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ABRSTRACT
A computer program 1s presented which estimates the
ftrend in a rectangular arrav of gravity measurements. It

assumed that the regional trend of gravity may be

fio
©

o

stimated by a low-order polynomial. The methcd of least-
squares 1s applied to solve for the low--order polynomial
which pest approximates this trend. Gram orthogonal

polynomials are used in the solution of this least-sguares

Ui

surface fit.

The program is tested on a known polynomial and on
some hypothetical Bouguer gravity data and found to
approximate the regional trend of gravity in these cases.

The importance of eliminating any significant nbise
in the otservatibns before solving for the polynomial
estimate of the trend 1s emphasized. It is also noted that
the residuzls need not be normally distributed with a zero
mean in order to produce a reasonable approximétion to the

true residual Bouguer gravity map.
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I. INTRODUCTION

The measured value cf Bouguer gravity at any point may
be separated into three different components, namely, the
trend or regional component, the residual component, and a
random noise component. The trend component is that portion
of the recorded gravity caused by deep-seated or broad
geologic features. The residual component is that portion
of the measured gravity due to anomalous mass distributlons
which are of interest in geophysical exploration. The nois
component refers to any variation of the recorded gravity
data from the gravity values whilch may be properly assigned
to either trend or residual effects. Nolse can result from
obbservational or instrumental errors, small, near-surface
anomalous mass distributions, or other extraneous sources.

The elimination of the trend and noise components from
the recorded gravity data produces a residual Bouguer gravity
map which is used in all further geophysical interpretation.

It 1s the purpose of this study to develop a computer
program for the Geophysical Observatory of the University of
Missouri at Rolla which will effectively eliminate the trend
component cf gravity while retaining the residual component.
Experience has shown that the effects of the trend component
may be approximated by a low-order polynomial surface. The
method of least-squares 1s applied to solve for the
coefficients of the low-order polynomial which, statistically,
‘best describes the trend present in any given set of data.

Orthogonal polynomials are used in the solution of the



coefficients of the approximating function by this method,
due to the computational advantages wbilch they afford.

If any significant noise is present in the observations,
it must be detected and removed before separating the
residual and regional components of gravity, in order to
prevent distortion of the residual gravity anomaliles.

The computer program is tested on several sets of data
to evaluate its effectiveness in eliminating the trend
component from the Bouguer gravity map. The results of each
of these trials are presented in detail in the following

chapters.



II. THE REVIEW OF THE LITERATURE

Griffen (1) was one of the earliest investigators to
identify residual gravity and present a techhique for
separating the residual gravity value at any point from
the observed Bouguer gravity value at that point. His
method involved the use of a moving mathematical average
over each point on the gravity map, as calculated on
selected circles about the point in question. Griffen is
careful to cite the factors that will affect the resultant
residual gravity map when using this method. Nettleton (2)
later summarized the work of many authors and enumerated
the inccnsistencies of various "ring averaging"” technigues.
Grant (3) discussed regional-residual gravity separation
and applied statistical probability to the numerical methods
which existed at that time.

Agocs (4) was the first geophysical investigator to
apply the method of least-squares to the problem of
regional-residual gravity separation. ﬁe fitted a plane to
a set of gravity observations utilizing the least-squares
technique, and suggested that higher order surfaces might
be useful in some cases. Simpson (5) fitted low-order,
nonorthogonal polynomials to gravitational data by the
method of least-squares, using a digital computed in his
calculations.

Oldham and Sutherland (6) first recognized the
'advantage of using orthogonal polynomials in estimating the

regional trend of gravity. Thelr work is based on the



mathematical theory developed by De Lury (7). Grant (8)
later extended the ideas presented by Oldham in the most
complete article on regional-residual gravity separation
by orthogonal polynomials available to date. Although the
author was unable to study De Lury's book directly, the
pertinent ideas presented by him are restated by both
Grant and Oldham. The basic mathematical theory on
orthogonal polynomial surface-fitting is covered in detail
in Chapter ITI, The Theory of Least-Squares Surface-Fitting
by Orthogonal Polynomials.

Forsythe (9) shows how normalizing the independent
variable before calculating the orthogonal polynomials
reduces the round-off error produced when performing
calculations on a digital computer. Much of the theory of
least-squares approximation using orthogonal polynomials is
also discussed in his paper.

Ralston (10) has an excellent chapter dealing with
least-squares data-fitting techniques in one independent
variable in hls recent book on numerical analysis. The
theory of curve-fitting presented by Ralston is easily
extended to surface-fitting with the theory outlined by
Grant (8). Ralston meticulously points out the advantages
orthogonal polynomials afford in eliminating the need to
deal with an ill—conditionéd matrix in the calculation of
the coefficients of the approximating function by the
‘method of least-squares, and the possible sources of

machine-generated errors in calculating these coefficients.



A recurrence relation for generating Gram orthogonal
polyncmials is derived by Ralston. Thils recurrence relation
is presented in the following chapter. A statistical test;
described by Wilks (11), for decisions regarding the degree
of the best approximating orthogonal polynomial for a given
set of data is also available in Ralston's work.

Clenshaw (12) and Cadwell (13) have written short
articles on curve-fitting and surface-fitting, respectively,
in recent years. Their articles are useful, primarily,
for the analysis of computer time required for different
arrays. The mathematical theory is highly condensed and
similar to Forsythe's in both cases.

Peikert (1H4) has developed an IBM system/7090 ccniputer
program for least—-squares analysis in three dimensions, but
it deals primarily with geological data and was not,

therefore, extensively studied by the author.



IIT. THE THEORY OF LEAST-SQUARES SURFACE-
FITTING BY ORTHOGONAL POLYNOMIALS
It is convenient to define the Bouguer gravity at any

point, (Xi’yi)’ by the equation
G(Xi’yi) = Z(xi,yi) + Ri + Ni’ (V)

where Z(xi,yi) i1s the value of the regional ccmponent of
gravity at the point (Xi’yi)’ Ry is the value of the

residual gravity ccmponent at the point (Xi’yi)’ and Ni is
the value of the random noise component at the point (Xi’yi)°
It is assumed that the residual gravity components are
uncorrelated and, correspondingly, the noise components are
uncorrelated. The residuals may exhibit correlation over
small, local groups of points, but this correlation is
insignificant when the entire set of observations is
considered.

The expected value of the noise over the set of
observations is assumed to be zero. This assumption should
be valid provided a sufficiently 1érge number of data points
are analyzed. If, in turn, the expected value of the

residual gravity component over the entire set of

observations is zero, then defining Si as



it is apparent that
E[Si] = E[Ri] + E[Ni] = 0.
This allows equation (1) to be written as
G(xi,yi) = Z(xi,yi) + Si, (2)

where Si 1s the random error which 1s present in any‘set of

measured data. It is then obvious that

E[G(x;,y,) 1 = E[Z(x;,y,) 1.

Then, determining a regression surface of the mean of
G(xi,yi) will specify the regional or trend component of
gravity, Z(xi,yi), for every point (xi,yi).

The assumption of a mean value of zero for the
residual component of gravity iImplies that positive and
negative anomalies are equally likely, which, at first,
seéms highly restrictive. However, small deviations from an
expected value of zero for the residual component will
alter any regression surface but slightly. On the other
hand, large departures from an expected value of zero for
the residuals are generally easy to detect on the isogal map
of the Bouguer gravity data. Often, the latter case will
not require a regional-residual separation for locating the
residual gravity anomalies. Thus, the assumption of a mean

value of zero for the residuals i1s not as severe a



constraint as it may first appear.

Let Z(x ) be estimated by the function

1294
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Z(xi,yi) =k=0 2o K3 kJ(xi,yi), (3)

where ij(xi,yi) is a set of polynomials of degree k in x

and of degree J in y and the bkj's are undetermined

coefficients. One should expect Pk (xi,yi) to be restricted

J
to low-order polynomials by the definition of the recgional
gravity component. Another reason for limiting ij(xi,yi)
to low-order polynomials is that the true residual anomailiies
may be eliminated by fitting the observations too closely.

The method of least-squares calculates the coefficients
of the polyncomials such that the sum of the squares of the
error (residual plus noisc) terms is a minimum over the set
of observations. Least-squares fitting also allows easy
computation of each coefficlient, bkj’ from the normal
equations. Experience has shown that this method possesses
excellent smoothing propertlies which are necessary to
preserve the residuals in this case. It 1is desired, tﬁen,
to minimize § Si over the set of observations, or in an

i
equivalent form to minimize

r { G(x,,y.,)
1 12717

W ~m3

z (x,,7,) 1
b P X, ,¥ .
0 3=0 'k ki i

"in order to satisfy this condition it is required that
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{ zl6(x5,y,) - I
Dy g 1 1771 k=0 j

-

i~

2 -
0 bkj ij(xi,Ji) 1} = o.

It 1s easily verified that the above differentiation

results in an expression of

L G(x,,y:) P, .(x.,y:) '
bkj _ i i 21 ‘kj i’vi (%)
§ Pl{j(xi,yi) .

for the coefficients of the approximating polynomial.

In matrix notation an equlvalent expression 1s
(8] = [2'p17T [P'] [al, (5)

where [P] 1s the matrix defined as

Poo(xl,yl) P01(X1’y1)

Pmn(xl’yl)

Poo(X2:¥2) Poilxasyp) o v o Pp,(xp.95)

[P] = . . o e . s

v
—~
»
«
~r

Poo{Xys¥4) Pup(xysyy) . mn X4

S, —_—

[P'] 1s the transpose of the matrix [P], [(G] is the column
matrix of the observed gravity value for each point, and
[B] is the column matrix of the coefficients for each

polynomial. The inverse of the symmetric matrix,



L0

e —
2 v
z P r P__P z P P . . L P P
i 00 N 00 01 1 00" 02 5 00 mn
2
I P _FP L P zZ P ._P . . r P P
N 01 00 i 01 i cl 02 1 01l mn
[P'P] = . . . .. . s

TP P S P P TP P z p°

i mn 00 i mn 01 i mn 02 * * i mn

where Pmn is Pmn(xi,yi), is required in the calculation of
the coefficients of the polynémials by the method of least-
squares. Using any arbifrary polynomial will lead to an
ill-ccenditioned matrix which greatly magnifies any
rcund-off error generated in the solution of the least-
squares problem. Ill-conditioning refers to a loss of
significaht figures during calculation by taking the
inverse of a matrix whose off—diagbnal elements are very
large. Fox (15) has a comprehensive discussion of
ill-conditioning in his text on numerical analysis.
Churchill (16) defines a particular class of

polynomials which satisfy the property

b ij(x.,yi) P (xi,yi) = 0 if k#h and j#g, (6)

5 i hg
as orthogonal polynomials. Applying orthogonal polynomials
to the solution of the least-squares problem requires that
all the nondlagonal elements of the matrix [P'P]~1 be zero.

Thus, the orthogonalApolynomials eliminate, by definition,

the need to perform any calculations with an ill-conditioned



matrix in the soluticn of the least—squafes proolem. They
also shorten computing time and storage space for any given
array of gravity data. Another unique advantage of using
orthogonal polynomials in this problem is that each

coefficient, is independent, that is, its value 1is

bkj’
not affected by the degree of the approximating orthogonal
polynomial.

Grant (8) shows that if the array of observed gravity
data 1s spaced in equal increments in the x-direction and
egqual, but possibly different increments in the y-direction,

then the orthogonal polynomial P (Xi’yi) may be written as

kJj
ij(xi,yi) = Pk(xi) Pj(yi)’ (7)

This allows the orthogonality property to be stated as two

separate conditions,

it
o

i Pk(xi) Ph(xi)

if k¥ # h, (8)

and

|
o

z Pj(yi) Pg(yi) it J # e. (9)

i

Almost all gravity measurements are taken in such a regular

array, and, due to this fact, only data which is spaced in

a rectangular array 1s considered 1in this study. Methods

for dealing with irregularly spaced data are given by Grant.
The question which now arises is what type of

"orthogonal polynomlals to use in the solution of the least-



squares problem. A set of orthogonal polynomials which have
been shown to be of great value In the case of equally
spaced data are Gram orthogonal polynomials. These
polynomials are derived by Ralston (10) for one independent
variable and are extended to the two independent variable
case with the previously stated theory.

Forsythe (9) found that tpe round-off error generated
in the computation of the coefficients of the Gram orthogonal
polynomials was greatly reduced 1f the independent variable
was normalized so that the origin fell in the center of the
data set. He defines the normalized independent variable,

s, as

= - L, (10)

where X4 is the initial value of the independent variable,

X, h is the spacing of the observations, and
L = (M—l)/2,

where M is the number of observations.

Let the coefficients BJ and eJ be defined by the

equations

2 2

g =220 eLn)? - g

: J for 3=1,2,3,...,  (11)
J 4 (43° - 1)

and



-~

€= (23)! 1 for j=1,2,3,..., (12)
(3192 (2L) (2L-1) . . . (2L-j+1)

where (2L+1) is the number of data points under
consideration. It can be shown that a three term recurrence
relation exists for generating Gram orthogonal polynomials.

This relation 1is

(s,2L)=¢ [s/¢ Pj(s,2L) - /ej_l Pj_l(s,2L)], (13)

Pis1 j+1 3 3

where Po(s,EL) and P_l(s,2L) are defined as
Py(s,2L) = 1

and

P_1(s,2L) = 0.

Then, the value of the orthogonal polynomial at any point
is not only a function of the independent normalized
variable, s, but also a function of the number of data
points in the set of observations, (2L+1).

Letting sx and sy represent the normalized x and y

variables, respectively, equation (7) may be written as
ij(sxi,syi) = P, _(sx,) Pj(syi), (14)

where Pk(sxi) and PJ(Syi) are defined by equation (13) with
s replaced by sx and sy, respectively.
The problem which now presents itself is what degree,

m (k-J), of the orthogonal polynomial best approximates the



regional component of gravity. If an orthogonal polynomial
of some degree, M, exists such that the sum of the squares
of the error terms is zero, one should expect the

coefficlient b and the coefficients of all other higher

M+1

ordered terms to be zero. Wilks (11) recommends the

statistic

2

o 62/(N~m~1)

to test the hypothesis that bm equals zero, where

+1

% =z 52,
1

N is the number of observations, and m is the degree of the
orthogonal polynomial'being tested. Then, the value of 02
should be tested for each degree, m, of the approximating
orthogonal polynomial until no significant decrease in its
value is noted. The degree, M, of the orthogonal polynomial
for which this occurs is then, statistically, the best fit
to the observed gravity data. This result is valid if no
errors are present in the data or i1f the errors are
normally distributed with a zero mean and some variance 02.
A computer program was developed which utilized
the method of least-squares in solving for the coefficients

of the orthogonal polynomial which, statistically, best

approximated the trend in an array of gravity measurcments.



IV. AN ANALYSIS OF THE LEAST SQUARES
SURFACE~FITTING CCOMPUTER PROGRAM

A Fortran IV computer program capable of fitting a
surface to a rectangular array of up to five hundred data
points was written for the Geophysical Observatory of the
University of Missourli at Rolla. It is the purpose of this
chapter to explain the operation of this program. A flow
chart of the program is given in Appendix A and a copy of
the program is presented in Appendix B. The program was
tested on a known polynomial and on two synthetic Bouguer
gravity maps derived from known mass distributions. The
IBM system/360 model U0 digital computer of the University
of Missouri at Rolla was used 1in the calculations. The
following chapters will present the results of the above
tests of the program in detail.

The program was designed to operate on a rectangular
array of M data points 1n the x-direction and N data points
in the y-diréction. The values of M, N, and the observed
Bouguer gravity for each point must be read into the
computer for every set of data analyzed. This is the only
input that varles for a given set of observations. Each
point 1s assigned a different number from one to I, where I
is the product M.N. Figure 1 shows how each point, (xk,yk),
is numbered. The Bouguer gravity value for each point must
be read in sequentially from one to I.

‘The'program assumes that the origin is in the center

of the rectangular array of observations and that the
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(xy,¥4) (x5,¥5) . . . (x >v_)

X x x

(Xm+l’ym+l) (Xm+2’ym+2) : : D (X2m’y2m)
x x X

(Xopm+1°Yome1? (X5 425Yomen) . . . (X3m,y3m)
X x X

. . . - (ij, jm)
* x

(ij+1’y3m+l) (ij+2’yjm+2) (xnm’ynm)
X X x

Figure 1

The Numbering System of the Rectangular Array of Observations




grid-spacing is unity in both the x-direction and the
v-direction. The first assumption requires that both M and

N be cdd numbers. The assumption of unit grid-spacing in
both directions indicates that the coefficients calculated

by the method of least-saquares are coefficients of an
orthogonal polynomial in the normalized independenf variables
sXx and sy. The latter assumptlon decreases round-off error
in the calculation of the coefficients of the polynomial,
7Z(sx,sy), which best fits the data, without any loss of
generality in the computation of the residual Bouguer gravity
at any point.

In order to prevent division by zero in the computation
of the coefficients of the orthogonal polynomial which best
approximates the regionél component of gravity, both M and
N must be equal to or greater than seven. It is improbable
thaf one éould detect a trend without this condition being
satisfied.

The coefficients of all terms up to and including
sxSSySare computed. A trend of this high a degree wouid,
in all likelihood, be geologically impossible by the
definition of the regional component of gravity. Thus, by
calculating coefficients of terms up to and including this
tenth degfee term, we are assured of having the coefficients
of all the terms necessary for describlng the trend in any
set of observations if such a trend exists.

The dimensions of the arrays G(I,1) and A(I,36) must

be changed in the DIMENSION statement to the number of



observations, I, being analyzed, as matrix subroutines

U

W

e
i

ch utilize compact storage are used in the calculation
of the coefficients of the orthogonal polynomial that best
approcximates the regional component of gravity. The FCRMAT
statement used for reading the Bouguer gravity valu¢ of
each point may be adapted to suit the data.

The program calculates a constant that approximates
the set of observations. In the least-sguares sense, this
is the best polynomial of zero degree in sx and zero degree
in sy for approximating the trend in the gravity data. The

statistic

6% = §2/(N-m-1)

and the residual Bouguer gravity value for each point are
then calcglated using the approximation Poo(sx,sy). Then,
the.coefficients of the terms of the orthogonal polynomial
of the next higher degree (first degree in this case) are
added to the coefficients of the corresponding terms in the
lower degree orthogonal polynomial and the value of 62 and
each residual value are recalculated. This process 1is
répeated for each orthbgonal polynomial, ij(sx,sy), of
degree k in the variable sx and degree J 1n the variable sy,
as k and ] range independently over the integral values from
zero to five. An illustration of this procedure is given in
Figure 2. The program contalins no test of the magnitude of
5 .

‘0“ for purpbses of terminating the calculations, as in the

final analysis, the selection of the orthogonal polynomial



A set of coefficients for Z(sx,sy) if

Z(sx,sy) = Poo(sx,sy).

The value of 02 using this estimate of Z(sx,sy).

The value of the residual Bouguer gravity for each point
using this approximation of Z(sx,sy).

A set of coefficients for Z(sx,sy) if

Z(sx,sy) = Poo(sx,sy) + POl(sx,sy).

The value of o° using this estimate of Z(sx,sy).

The value of the residual Bouguer gravity for each point
using this approximatiocn of Z(sx,sy).

A set of coefficients for Z(sx,sy) if

Z(sx,sy) = POD(sx,sy)+ POl(sx,sy)+ Plo(sx,sy)+...+ PSS(SX’Sy)'
The value of g2 using this estimate of Z(sx,sy).

The value of the residual Bouguer gravity for each point

using this approximation of Z(sx,sy).

Figure 2

Form of the Computer Program Output




20

used in estimating the regional component of gravity is a
matter of geophysical interpretation. The value of 02 and
the magnitude of the coefficients of the various terms of
the approximating orthogonal polynomial are, of course,
impeortant considerations in this interpretation. This is to
say that the minimum value of 02 does not necessarily
correspond to the polynomial which best estimates the
regional component of gravity.

The program may be easily revised to analyze mcre than
five hundred points of data by merely altering the
DIMENSION statement. This would require, however, more core
storage than 1is currently available on the IBM system/360
digitél computer of the University of Missouri at Rolla.
It would be necessary to change several statements 1f one
wished to increase the maximum degree of the estimating
orthogonal polynomial in order to apply the program to some
cther problem.

The compilation time of the program when run in G level
Fortran IV is twec and one half minutes. The total compilation
and execution time for various arrays of data are given 1n

later chapters.
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V. A TEST OF THE LEAST-SQUARES SURFACE-FITTING
COMPUTEE PROGRAM ON A KNOWN POLYNOMIAL
In order to measure the accuracy of the coefficients
calculated by the least-squares surface-fitting computer
program, a known polynomial was evaluated at integral
values of 1ts independent variables and these.values were
read into a digital computer. The polynomial used in this

trial was
Z =1+ x + x2 + y2.

The only purpose of using this particular polynomial was
the ease it afforded in the evaluation of Z(x,y) at various
integral values of the independent varilables. Any
polynomial chosen would have served the purpose equally well.
Values of the polynomial were calculated at each point,
(x,¥y), as both variables, x and y, ranged independently
over the integral values from zero to six.
The computer program is designed to perform all

calculations with the normalized x and y variables? sx and

@]

y, respectively. In thils case,

X = sx + 3
and

y = sy + 3,

since x and y range over the same values. Changing the

'variables of the original polynomial to sx and sy, the



transformed polynomial is
_ 2 2
Z = 22 + 7 sx + 6 sy + sx° + sy“.

Values of the transformed polynomial are given in Table T
for -3 < sx £ 3 and for -3 < sy < 3. Then, the coefficients
calculaﬁed by the program should agree with the coefficients
of this transformed polynomial.

The statistic 02 decreased from a value of
.12782539 x 102 to a value of .44811763 x 10—8 with the
additiocon of an sx2 term to the approximating polynomial.

Then, the best polynomial approximation, in the least-

squares sense, to the data in this case 1is

Z = 21.999939 + 7.0000038 sx + 6.0000248 sy

+ .15764826 x 1072 sxsy + 1.0000029 sx°

+ 1.0000038 sy©.

As the maximum value of the sxsy term is .94588956 x 10—5,
it may be neglected without a significant ioss of accuracy.
The residual value at each point using the computed
polyncmial approximation is zero to at least the third
decimal place, indicating that no errors are present in the
data, which is indeed the case. Thus, the computed poly-
nomlal 1s in excellent agreement with the actual
transformed polynomial. The compilation and executicn time

required for this array of observatlons was three minutes

and thirty-nine seconds.



TABLE I

VALUES OF THE POLYNOMIAL

Z

= 1 + x + x2 + y2

23

(x,y) coordinate (sx,8y) coordinate z value
0,0 ~3,~-3 1
0,1 -3,-2 2
0,2 -3,-1 5
0,3 -3,0 10
0,4 -3,1 17
0,5 -3,2 26
0,6 -3,3 37
1,0 -2,-3 3
1,1 -2,-2 y
1,2 -2,-1 7
1,3 -2,0 12
1,4 -2,1 19
1,5 -2,2 28
1,6 -2,3 39




TABLE I (Con't)

VALUES OF THE POLYNOMIAL

Z =1+ x + x? + y2

(x,y) coordinate (sx,sy) coordinate z value
2,0 -1,-3 7
2,1 -1,-2 ’ - 8
2,2 -1,-1 11
2,3 -1,0 16
2,4 -1,1 23
2,5 -1,2 32
2,6 -1,3 43
3,0 0,-3 13
3,1 0,-2 14
3,2 0,-1 17
3,3 0,0 22
3,4 0,1 | 29

‘3;5 0,2 38

3,6 0,3 49




TABLE I (Con't)

VALUES OF THE POLYNOMIAL

Z=1+3x+x° +y°

(x,y) coordinate (sx,sy) coordinate z value
4,0 1,-3 21
4,1 1,-2 " - 22
y,2 1,-1 25
4,3 1,0 30
b,y 1,1 ’ 37
4,5 , 1,2 46
L,6 1,3 57
5,0 2,-3 31
5,1 2,-2 32
5,2 2,-1 35
5,3 .2,0 | 4o
5,4 2,1 47
'5;5 .2,2 56

5,6 2,3 67




TABLE I (Con't)

VALUES OF THE POLYNOMIAL

Z =1+ x +'x2 + y2

(Xx,y) coordinate (sx,sy) coordinate z value
6,0 3,-3 43
6,1 3,-2 q ' by
6,2 3,-1 47
6,3 3,0 52
6,4 3,1 ' 59
6,5 3,2 68

6,6 3,3 79
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VI. APPLICATIONS OF THE COMPUTER PROGRAM
TO SYNTHETIC BOUGUER GRAVITY MAPS
In order to measure the computer program's

effectiveness in accurately approximating a regional trend
in gravity, synthetic Bouguer gravity maps calculated over
known mass distributions were analyzed. These maps were
composed of the superposition of the gravitational fields
of a large, infinitely long, horizontal cylinder and
smaller, spherical mass distributions. The field of the
horizontal cylinder is slowly varying when compared to the
fields of the smaller, spherical masses. Then, the
gravitational field of the horizontal cylinder represents
the regional component of gravity and the fields of the

spherical masses represent the residual gravity component.

A. SYNTHETIC BOUGUER GRAVITY MAP ONE

The gravitational fields of an infinitely long,
horizontal cylinder and two buried spheres were combined
into a composite Bouguer gravity map. Values of the contrast
density, radius, and depth of burial of each body are given -
in Table II. The Bouguer gravity map presented in Figure 3
1s composed of an array of twenty-five observation points
in the x-direction and nineteen observation points in the
y-direction. The Bouguer gravity value for each point 1s
accurate to + .02 milligals. The grid spacing 1is two
hundred feet in both directions. The axls of the horizontal

>cylinder is superimposed on this figure. Figure 4 is a



Table II

Mass Distributions Used in the Synthetic Bouguer Gravity Maps

Case One

Body Contrast Density Radius Depth of Burial
horizontal cylinder 0.5 5000 8000
sphere -0.5 300" 1000
Sphere 1.0 200" 500"

Case Two

Body Contrast Density Radius Depth of Burial
horizontal cylinder 0.5 5000 8000
sphere 0.5 300! 100G"
sphere 1.0 200! 500!

8c



residual Bouguer gravity map of the fields of the spherical
masses 1n the absence of the field of the horizontal
cylinder. The location of the centers of the two spheres
is obvicus 1n this figure. The fields of these spherical
masses are masked by that of the horizontal cylinder in the
isogal map of the original Bouguer gravity data.

Then, it is the functionvof the surface-fitting
program to approximate the field of the horizontal cylinder
and, in so doing, eliminate this calculated field fromAthe
Bouguer gravity map to yield a residual Bouguer gravity map.
which approximates the fields of the spherical masses. The
statistic 02 decreases from a value of .28591222 to a value

2

of .32531831 x 10 ° when using the polynomial

Z = 19.932709 + .50981566E-02 sx - .60417354E-C2 sy

+ .29440271E-03 sxsy - .14422765E-01 sx2

~ .317644T9E-03 sy°

to approximate the regional trend of gravity. This 1s the
first slgnificant decrease in the value of 02 and, therefore,
Athis approximating polynomial was used to estimate the trend
of the observations. The residual gravity wvalue for each
point was calculated using this polynomial. The computed
residual Bouguer gravity map is given in Figure 5. This
residual map 1s in excellent agreement with the desired
residual map of Figure 4. The true minimum value of the

‘negative anomaly is -.46 milligals. The computed minimum
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value of this anomaly is ~.38 milligals. The true maximum
value of the positive anomaly is .27 milligals and the
computed maximum value is .21 wmilligals. The minimum value
of the negative anomaly and the maximum value of the
positive anomaly are coincident on both the computed and
the actual residual gravity maps. Distortions of both the
amplitude and the areal position of the residual anomalies
on the computed residual Bouguer gravity map are due to the
fact that the residuals are nbt normally distributed with

a zero mean. It should be noted that even though this
cendition 1s not satisfied, the computed residual gravity
map is in good agreement with the actual residual gravity map.
That 1s, a reasonable gecphysical interpretation of the
subsurface may be performed using the computed residual

Bouguer gravity map.

B. SYNTHETIC BOUGUER GRAVITY MAP TWO

The values of the contrast density, radius, and depth
of burial of the horizontal cylinder and spherical masses
used in calculating the second synthetic Bouguer gravity map
are given in Table II. These are the same as those used in
the first Bouguer gravity map except for the contrast
density of the shallower sphere. The 1isogal map of the
Bouguer gravity data is given in Figure 6. The number of
.observations and the grid spacing are identical to the first
"gravity map. The Bouguer gravity value for each point 1s

accurate to *+.02 milligals. The true residual Bouguer
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gravity map which is due only to the gravitational fields

of the two spheres is presented in Figure 7. The statistic
5

o decreases from a value of .28515387 to a value of

.26339896 x 1072 when using the polynomial

Z = 19.970581 - .10610633E-02 sx + .25206164E-02 sy
- .8166907UE-03 sxsy - .114200675-01 sx°

- .80105328E-05 sy°

to approximate the regional component of gravity. The
residual Douguer gravity map produced using this estimate
of the trend is given in Figure 8. The maximum amplitude
of the anomaly due to the deeper sphere is .27 milligals.
The computéd amplitude of this anomaly has a maximum value
of .21 milligals. The anomaly due to the shallower sphere
has a maxlimum value of .46 milligals. The compubted maximum
for this anomaly 1s .35 milligals. This 1s in good
agrecment with the actual residual DBouguer gravity map of
Fipure 7, even though the departure of the residuals from a
zero mean and a normal distribution is greater than in the
first synthetic gravity map. The maximum values of both
anomalies are again colincident on the two residual Bouguer
gravity maps. Thus, the residuals need not be normally
distributed with a zero mean in order to derive a reasonably
accurate residual Bouguer gravity map.

The compilation and execution time for both maps was

eight minutes and fifteen seconds.
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ViL. T PROBLEM COF NOISE IN THE SEPARATICN OF TIHE
REGIONAL AND RESIDUAL COMPONENTS OF GRAVITY

Hoisy points may distort a residual Bouguer gravity map

IS
bS

3

by iatroducing false anomalies. Then, it is imperative

that aﬁy slgnificant nolse in the observations be eliminated
prior to performing a regional-residual separation of
gravity.

Grid-spacings used in conducting any particular gravity
survey are selected on the basis of the size and depth of
the mass distributions which are of geophysical interest.
This means that each residual feature must be detected at
several different points in the data set. Thén, over small,
iceal groups of points the residuals show correlation. If
211y noise is prescnt In these observations it will not exhibit
tnis covrelation. This is the key to the elimination of the
noise from the data set.

It 1is possible by normalizing a small group of
cbseprvations and testing cach point against a prespecified

confidence interval on the normal distribution curve that

such nolse may be detected. Any noilsy point may then be
replaced by Interpolating a value from the adjacent

observations. This process is repeated until the entire set

of observations has been tested. With this technique

enough points must be uscd to insure that the mean and the

variance of the group 1is not greatly influenced by any

nolsy peints. However, the points used with such a teechnique

must exhibilt enough correlation of the residuals to insure



that they are not discarded as noise., Satisfying both of
thése cenditions 1s often not possible, and in such cases
the methed is not applicable. Some other technique must
then be devised for detecting and eliminating the noise.
An investigation of different techniques for detecting and
eliminating this noise 1is an excellent subject for further

research.

39



VIIT. CONCLUSIONS

The least-squares surface-fitting computer program
has been shoﬁn to be effective in estimating a regional
trend which can be approximaﬁed by_a low-order polynomial,
in a rectangular array of gravity data. The program was
shocwn to fit the trend without greatly distorting any
residual gravity anomalies.

The Gram orthogonal polynomials used in the
soluticn of the best polynomial estimate of this trend
yielded coefficients which contained no significant
round-off errofs.

It was seen that the residuals need not be exactly
normally distributed with a zZero mean in order to obtain a
residual Bouguer gravity map which is accurate enough
for a reasonable geophysical interpretation of the
subsurface .’

An analysis of the statilistic 02 was seen to be
sufficient in most cases for selecting the best function

for approximating the regional trend of gravity.
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APPENDIX A

Sinplified Flow Chart of the Computer Program

rgéad_the arrays of constants, LC(J) and PC(J).

4

[Read the values of M and N.

—
i

y

LCalculate SA(T)

for I points.

.
Calculate SY(J)

for I points.

-

Calculate the Bjs and ejs
for Gram orthogonal
polynomials in the SX

variable

-

Calculate PkSXi) for

each point, (SXi,S¥i).

|

¥

Calculate the RB.s and e.s
: ' J J

for Gram orthogonal

polynomials in the SY

variable.

[x=1]

-

Calculate Pk(SYi) for

each point, (SXi’SYi)'
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- br 0

X
(x=5)] = or 0 [ 1F (K-t
+ .
!
NL = 1
L =1
g =1

N

A(K, L) = PL(SXi)~PJ(S

for 1 = 1,2,3,...,1

( A array is [P] )

Yi)

NI, = ML + 1

J = J + 1

IF (J-6) - or O
+

L = L + 1

Iw (L-6) - or O
+
Y




4o

P

K = 1
+—.—.—
2
AX = [A(K,NL)]
4
[suM = sumM + AX
XK = K + 1
IF (K-I) - or 0
+
B(NL) = 1/SUM

(B array is [P'P]_l)

-

NL = TIJ + 1

=
IF (NL-36) = or O

+




L 4

READ G(T,1)]

MATRIX SUBROUTINE

tcl = [Aa'] [G]

2

MATRIX SUBROUTINE
[corr] = [B] [C]

(CCFF is the array of b

kjs?

rK = 1

A

L

Calculation of the coefficients
,CPX(J), of individual terms

of Pkk(sxi)'

i
}—

LL

A

Calculation of the coefficients
,CPY(K), of individual terms




NS = 0O

N36S = 36-NS

Z(L,,N36S) = CPX{J)CPY(K)

NS

il

MS + 1

Ir (LI-6) —_or 0

IF (KK-6) - or 0

+

Initialize array CLS(J) to zevo for

J =1, 2,3, - . . , 36

RN

i
H




JL = 1

|
NX = LC(JL)

Y

[0 =1

+

3

CLS(J) = COFF(NX,1)®Z(NX,J)

+ CLS(J)

Il

J J+1

IF J-36 — = or O |

WRITE (CLS(J) J = 1,36)

y
SRES2 = 0

.

GRAV = 0O

A

Calculate the value of

- n :
[SX(K)]) forn =1, 2, . . . ,




i

Calculate the value of

i

[SY(K)1™ for n =1, 2, . . . , 5.

>

LK = 1

Y

GRAV = GRAV + RUL(LK)®(CLS(J) + CLS (J+1)

#AlL + CLS(J+2)*A2 + CLS(J+3)%A3

4+ CLS(JIJ+4)#Al + CLS(J+5)*A5)_

;
LK = LK+1

J = J+6

IF (J-31) =_or Q

+

-

RES = G(K,1) - GRAV

X(K) = RES

K = K+1




IF (K-I) —- or 0

+

Y

2

i

SRES2 + RES

SRES2

X

SIGMA2(JL) = SRES2/(RN-PC(J)-1)

R 4

WRITE SIGMA2(JL)

X
[WRITE (X(K) X = 1,I)

il

JL+1

JL

IF JL-26 —-_or 0O

Lsror

-
Y
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APPENDIX B

The Least-Squares Surface-Fitting Computer Program

It 1s the purpose of this Appendix to present a copy
of the computer program written specifically for the
separation of the regional and residual components of
gravity. The prbgram uses~the ﬁethod of least-sqguares to
solve for the. coefficients of an orthogonal polynomial
which best approximates the trend in a set of observations.

The program requires a rectanpgular array of
observétions of M pointslin the x-direction and N points
in the y-direction. The values of M, N, and’measured

value of each point, G(I,1), are the only input quantities.



QOO

S NGR OGN

LEAST SQUARES SURFACE FITTING PROGRAM USING ORTHOGONAL

POLYNOMIALS. VALID FOR 500 DATA POINTS

VALID TO S5TH DEGREE IN X AND Y.

DIMENSION X(500),CPY(6),SX(500),SY(500),FMULT(6) FACFX(6),
1FACFY(6),ETAX(6), ETAY(6) BETAX(6) BELAY(6) POhYSX(?) B(36),
2PC(36),LC(36),C(36,1),COFF(36,1),Z(36,36),CLS(36),CPx(6),
3POLYSY(7),RUL(6),SIGMA2(36),G(475,1),A(L475,36)

READ (1,109) (LC(J),J=1,36)
READ (1,120) (PC(J),J=1,36)

M=NO. OF X DATA PTS., N=NO. OF Y DATA PTS.
REQUIRES THAT BOTH M AND N ARE EQUAL TO OR GREATER THAN 7

READ (1,100)M,N
I=M¥N

READ (1,101) (G(X,1),K=1,I)
K=1

L=1

NN=I+1-M

MM=M
XL=(M-1)/2
R=0.0

DO 1 J=K,MM
P=R

R=R+1.
SX(J)=P-XL
K=L¥M+1

L=L+1

MM=K+M-1

IF (K-NN)2,2,3
K=1

L=1

YL=(N-1)/2
T=0,0

NM=M

p=T

€S
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DO 4 J=K,NM
SY(J)=P-YL
T=T+1.
K=L¥M+1 .
L=L+1

NM=K+M-1

IF (K-NN)5,5,6

X AND Y VARIABLES ARE NOW KNOWN AND NORMALIZED.
CALCULATION OF ETA AND BETA COEFFICIENTS FOLLOWS.

Pl=1,
FACT=1.

- FACTN=1,

P3=1,

DO 7 J=2,6

P2=P1+1,

FACTM=P1*p2
FACT=FACT¥FACTM
P1=P2+1.
AFACT=P3*FACTN
P3=P3+1,

FACTN=AFACT

FMULT (J )=FACT/ (AFACT*AFACT)
PACX=1.

FACY=1.

XLN=2. ¥XL,

YLN=2, *YL

R=0.0

ETAX(1)=1.
ETAY(1)=1.
BETAX(1)=0.0
BETAY(1)=0.0
BC=(XLN+1.)¥(XLN+1.)
AC=(YLN+1.)*(YLN+1.)
DO 9 K=2,6
FACFX(K)=FACX* (XLN-R)



aOQOa

FACFY (K)=FACY*(YLN-R)
R=R+1.
FACX=FACFX(K)
PACY=FACFY (K)
ETAX(K)=FMULT(K) /FACFX(K)
ETAY (K)=FMULT (K ) /FACFY (K)
PN=(K-1)*(K-1)
BETAX(K)=PN*(BC-PN)/(4.¥%(4,*PN-1.))
9 BETAY(K)=PN*(AC-PN)/(4.*(4,%PN-1.))

ETA AND BETA COEFFICIENTS NOW KNOWN.

EVALUATION OF THE ORTHOGONAL POLYNOMIALS FOR EACH POINT FOLLOWS.

NL=1
POLYSX(
. POLYSY(

IF (LN- ,25,23
23 POLYSX(3) ETAX(2)*(SX(K)/ETAX(1)*POLYSX(2))
IF (LN-3)80,25,24
24 DO 28 J=4,7
28 POLYSX(J)=ETAX(J-1)*(SX(K)/ETAX(J-2)*POLYSX(J-1)
1-(BETAX(J-2)/ETAX(J-3)¥POLYSX(J-2)))
25 IF (LJ-2)80,29,26
26 POLYSY(3)=ETAY(2)*(SY(K)/ETAY(1)*POLYSY(2))
IF (LJ-3)80,29,27
27 DO 62 J=4,7
62 POLYSY(J)=ETAY(J-1)*(SY(K)/ETAY(J-2)*POLYSY(J-1)
1-(BETAY(J-2)/ETAY(J-3)¥POLYSY(J-2)))
29 A(K,NL)=POLYSX(LN)*POLYSY(LJ)
20 NL=NL+1

VALUE OF ORTHOGONAL POLYNOMIALS FOR EACH POINT NOW KNOWN.
A ARRAY IS P MATRIX, B: ARRAY IS THE INVERSE OF P TRANSPOSE X P

cq



s XeNeoNeNe)

B IS A DIAGONAL MATRIX

DO 22 NL=1,36

SUM=0.0

DO 21 K=1,I

AX=A(K,NL)*A(K,NL)

SUM=SUM+AX

B(NL)=1./SUM

CALL TPRD (A,G,C,I,36,0,0,1)
CALL MPRD (B,C,COFF,36,36,2,0,1)

COFF IS THE ARRAY OF COEFFICIENTS B(J,K) OF THE ORTHOGONAL
POLYNOMIALS. THE EVALUATION OF THE COEFFICIENTS OF THE INDIVIDUAL
TERMS IN EACH POLYNOMIAL FOLLOWS.

L=0

JN=0

JX=2
BX=BETAX(2)
BY=BETAY(2)
ARX=BETAX(4)¥BX
ARY=BETAY (4)*BY

- DO 40 KK=1,6

39

30

DO 39 J=1,6
CPX(J)=0.0
J6N=6-IN
CPX(J6N)=ETAX(JIN+1)
IN=JN+1

JTN=T-JN

J9N=9=JN

IF (JN“3)32,30,30
CPX(J9N)==CPX(JTN)*BX
JX=JX+1
BX=BX+BETAX(JX)
J11N=11-JN

IF (JN-5)32,31,31

Qc
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31 CPX(J11N)=CPX(JTN)*ARX
ARX=ARX+BETAX(5)*(BETAX(2)+BETAX(3))
32 JY=2
NJ=0
DO 40 LL=1,6
DO 42 J=1,6
42 CPY(J)=0.0
N6J=6-NJ
CPY(N6J)=ETAY(NJ+1)
NJ=JN+1
N7J=T=NJ
N9J=9-NJ
IF (JN-3)41,34,34
34 CPY(N9J)=-CPY(N7J)*BY
JY=JY+1
BY=BY+BETAY(JY)
N11J-11-NJ
IF (NJ-5)41,43,43
43 CPY(N11J)=CPY(N7J)¥*ARY
ARY=ARY+BETAY(5)*(BETAY(2)+BETAY(3))
41 L=L+1
NS=0
DO 50 K=1,6
DO 50 J=1,6
N36S=36-NS
Z(L,N36S)=CPY(K)*CPX(J)
50 NS=NS+1
40 CONTINUE

CLS IS THE ARRAY OF COEFFICIENTS FOR INDIVIDUAL TERMS IN X AND Y
AS ADDITIONAL POWERS OF X AND Y ARE ADDED ON INDIVIDUALLY

THE VARIANCE OF THE COMPUTED GRAVITY FROM THE OBSERVED GRAVITY
IS CALCULATED FOR EVERY ADDITIONAL TERM.

DO 37 J=1,36
37 CLS(J)=0.0

LS



38

59

58

60

72
100
101
108
109

RN=I

RUL(1)=1.

DO 72 JL=1,36

NX=LC(JL)

DO 38 J=1,36
CLS(J)=COFF(NX,1)*Z(NX,J)+CLS(J)
WRITE :(3,140)

WRITE (3,110) (CLS(J),J=1,36)
SRES2=0.0

DO 60 K=1,I

GRAV=0.0

A1=SX(K)

A2=SX(K)*Al

A3=8X(K)*A2

Ab=SX(K)*A3

A5=SX(K)*Ak

DO 59 J=2,6
RUL(J)=RUL(J-1)*SY(K)
LK=1

DO 58 J=1,31,6
GRAV=GRAV+RUL(LK) * (CLS(J)+CLS(J+1)*A1+CLS(J+2) ¥A24CLS(J+3) *A3
1+CLS(J+U) *A4+CLS(T+5) *A5)
LK=LK+1

RES=G(K,1)-GRAV

X(K)=RES

SRES2=SRES2+RES¥RES
SIGMA2(JL)=SRES2/(RN-PC(JL)-1.)
WRITE (3,111)SIGMA2(JL)

WRITE (3,130)

WRITE (3,108) (X(K),K=1,I)
CONTINUE

FORMAT (2110)

FORMAT (12F6.2)

FORMAT (8F10.3)

FORMAT (1813)

RS



110 FORMAT (3X,'Y¥¥0',63X,6E18.8,/,3X,'Y**1' 3X,6E18.8,/,3X,'Y¥¥2' 3X,
16E18.8,/,3X,'Y**3' 3X,6E18.8,/,3X, 'Y*¥4' 3X,6E18.8,/,3X,'Y¥¥5"
23X,6E18.8,///)

111 FORMAT (/,3X,'VARIANCE =',E18.8,//)

120 FORMAT (12F6.2)

130 FORMAT (3X,'RESIDUAL GRAVITY VALUES AT EACH POINT ARE',//)

140 FORMAT (//,3X,'THE LEAST SQUARES COEFFICIENTS ARE',//,17X,'X¥#Q',
115X, ' XHE1Y 15X, ' X¥821 15X, 'XR¥3T 15X, 'XN#Y 15X, ' X¥R5T //)

80 STOP
END

AC
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